skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yanling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developmental plasticity is critical for plants to adapt to constantly changing environments. Plant root hairs display dramatic plasticity under different environments and therefore play crucial roles in defense against environmental stressors. Here, we report the isolation of an Arabidopsis mutant, salinity over-sensitive mutant 1-1 (som1-1), also exhibiting root hair developmental defects. Map-based cloning and allelic analyses confirmed that som1-1 is a new mutant allele of SPIRRIG (SPI), which encodes a Beige and Chediak Higashi (BEACH) domain-containing protein. SPI has been reported to facilitate actin dependent root hair development by temporally and spatially regulating the expression of BRICK1 (BRK1), a subunit of the SCAR/WAVE actin nucleating promoting complex. Our living cell imaging examinations revealed that salt stress induces an altered actin organization in root hair that mimics those in the spi mutant, implying SPI may respond to salt stress induced root hair plasticity by modulating actin cytoskeleton organization. Furthermore, we found BRK1 is also involved in root hair developmental change under salt stress, and overexpression of BRK1 resulted in root hairs over-sensitive to salt stress as those in spi mutant. Moreover, based on biochemical analyses, we found BRK1 is unstable and SPI mediates BRK1 stability. Functional loss of SPI results in the accumulation of steady-state of BRK1. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Partition coefficients for rare earth elements (REEs) between apatite and basaltic melt were determined as a function of oxygen fugacity (fO2; iron-wüstite to hematite-magnetite buffers) at 1 bar and between 1110 and 1175 °C. Apatite-melt partitioning data for REE3+ (La, Sm, Gd, Lu) show near constant values at all experimental conditions, while bulk Eu becomes more incompatible (with an increasing negative anomaly) with decreasing fO2. Experiments define three apatite calibrations that can theoretically be used as redox sensors. The first, a XANES calibration that directly measures Eu valence in apatite, requires saturation at similar temperature-composition conditions to experiments and is defined by: ( E u 3 + ∑ E u ) Apatite  = 1 1 + 10 - 0.10 ± 0.01 × l o g ⁡ ( f o 2 ) - 1.63 ± 0.16 . The second technique involves analysis of Sm, Eu, and Gd in both apatite and coexisting basaltic melt (glass), and is defined by: ( Eu E u * ) D Sm × Gd = 1 1 + 10 - 0.15 ± 0.03 × l o g ⁡ ( f o 2 ) - 2.46 ± 0.41 . The third technique is based on the lattice strain model and also requires analysis of REE in both apatite and basalt. This calibration is defined by ( Eu E u * ) D lattice strain = 1 1 + 10 - 0.20 ± 0.03 × l o g ⁡ ( f o 2 ) - 3.03 ± 0.42 . The Eu valence-state partitioning techniques based on (Sm×Gd) and lattice strain are virtually indistinguishable, such that either methodology is valid. Application of any of these calibrations is best carried out in systems where both apatite and coexisting glass are present and in direct contact with one another. In holocrystalline rocks, whole rock analyses can be used as a guide to melt composition, but considerations and corrections must be made to either the lattice strain or Sm×Gd techniques to ensure that the effect of plagioclase crystallization either prior to or during apatite growth can be removed. Similarly, if the melt source has an inherited either a positive or negative Eu anomaly, appropriate corrections must also be made to lattice strain or Sm×Gd techniques that are based on whole rock analyses. This being the case, if apatite is primary and saturates from the parent melt early during the crystallization sequence, these corrections may be minimal. The partition coefficients for the REE between apatite and melt range from a maximum DEu3+ = 1.67 ± 0.25 (as determined by lattice strain) to DLu3+ = 0.69 ± 0.10. The REE partition coefficient pattern, as observed in the Onuma diagram, is in a fortuitous situation where the most compatible REE (Eu3+) is also the polyvalent element used to monitor fO2. These experiments provide a quantitative means of assessing Eu anomalies in apatite and how they be used to constrain the oxygen fugacity of silicate melts. 
    more » « less